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Abstract In this paper, a class of functions called B-arcwise connected (BCN) and strictly
B-arcwise connected (STBCN) functions are introduced by relaxing definitions of arcwise
connected function (CN) and B-vex function. The differential properties of B-arcwise con-
nected function (BCN) are studied. Their two extreme properties are proved. The necessary
and sufficient optimality conditions are obtained for the nondifferentiable nonlinear semi-
infinite programming involving B-arcwise connected (BCN) and strictly B-arcwise connected
(STBCN) functions. Mond-Weir type duality results have also been established.
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1 Introduction

Avriel and Zang [2] extended the concept of convex function by defining arcwise connected
(CN), Q-connected (QCN), strongly Q-connected (SQCN), and P-connected (PCN) func-
tions. Bector and Singh [3] also extended the concept of convex function by defining B-vex
function. Mehra and Bhatia [16] studied optimality conditions and duality results for minmax
problems involving arcwise connected and generalized arcwise connected functions. Bhatia
and Mehra [4] investigated some properties of arcwise connected functions in terms of their
derivatives. The necessary and sufficient optimality conditions are presented, and Mond-Weir
type duality results are also proved. Davar and Mehra [7] obtained optimality conditions and
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duality results for fractional programming problems involving arcwise connected functions
and their generalizations.

Recently, many scholars have been making deeper research for semi-infinite program-
ming (SIP). Many good results have obtained especially in semi-infinite linear programming
(LSIP) and semi-infinite convex programming (convex SIP) [9,17,18]. For instance, the
duality and dual gaps for LSIP were studied by Charnes et al. [6], Goberna and López [8],
Liu [14], and Karney [11], respectively. López and Vercher [15] presented optimality condi-
tions for nondifferentiable convex SIP. Borwein [5] has proven a semi-infinite quasi-convex
program with certain regularity conditions possessing finite constrained subprogram with the
same optimal value. Rückmann and Shapiro [19] have given first-order Optimality condi-
tions in generalized SIP. The duality for convex SIP is investigated by Jeroslow [10], Karney
and Morley [12] and Li [13], respectively. The optimality conditions and duality results are
obtained and established by Zhang [21] for arcwise connected semi-infinite programming
problems.

The paper mainly includes two aspects. One is to extend arcwise connected (CN) and
B-vex functions. The other is to give optimality conditions and obtain duality results for
semi-infinite programming with the new generalized convex functions presenting in the
first aspect. This paper is organized as follows. Section 2 introduces B-arcwise connected
(BCN) and strictly B-arcwise connected (BSTCN) functions, and presents some properties. In
Sect. 3, we give some optimality conditions for semi-infinite programming problem involving
B-arcwise connected (BCN) and strictly B-arcwise connected (BSTCN) functions. In Sect. 4,
the Mond-Weir type duality results are obtained for the nonlinear semi-infinite programming
problem involving these generalized convex functions. In Sect. 5, conclusions and outlook
are given.

2 B-arcwise connected functions

In this section, we shall focus our attention on certain extensions of known families of
generalized convex functions. Let C be a nonempty open subset of R

n , let b(x, y, θ) :
C × C × [0, 1] −→ R+, 0 ≤ θ ≤ 1, 0 ≤ θb(x, y, θ) ≤ 1.

Definition 2.1 [1,2] A set C ⊆ R
n is said to be an arcwise connected (AC) set if, for every

x1 ∈ C, x2 ∈ C , there exists a continuous vector-valued function Hx1,x2 : [0, 1] −→ C ,
called an arc, such that

Hx1,x2(0) = x1, Hx1,x2(1) = x2.

Definition 2.2 [2] Let f be a real-valued function defined on an AC set C ⊂ R
n . Then

(i) f is said to be an arcwise connected function (CN) if, for every x1 ∈ C, x2 ∈ C , there
exists an arc Hx1,x2 such that

f (Hx1,x2(θ)) ≤ (1 − θ) f (x1) + θ f (x2), for 0 ≤ θ ≤ 1.

(ii) f is said to be a strictly arcwise connected function (STCN) if, for every x1 ∈ C, x2 ∈
C, x1 �= x2, there exists an arc Hx1,x2 such that

f (Hx1x2(θ)) < (1 − θ) f (x1) + θ f (x2), for 0 < θ < 1.
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Definition 2.3 [3] Let f be a real-valued function defined on a convex set C ⊂ R
n . Then

(i) f is said to be an B-vex function if, for every x1 ∈ C, x2 ∈ C , there exists a real
function b(x1, x2, θ) such that

f (θx1 + (1 − θ)x2) ≤ θb(x1, x2, θ) f (x1)

+ (1 − θb(x1, x2, θ)) f (x2), for 0 ≤ θ ≤ 1, 0 ≤ θb ≤ 1.

(ii) f is said to be a strictly B-vex function if, for every x1 ∈ C, x2 ∈ C, x1 �= x2, there
exists a real function b(x1, x2, θ) such that

f (θx1 + (1 − θ)x2) < θb(x1, x2, θ) f (x1) + (1 − θb(x1, x2, θ)) f (x2), for 0<θ<1.

f is said to be a concave CN (COCN) and concave STCN (COSTCN) function, respec-
tively, if − f is a CN and STCN function, respectively. f is said to be a B-cave and strictly
B-cave function, respectively, if − f is a B-vex and strictly B-vex function, respectively.

We introduce the following concepts of B-arcwise connected (BCN) and strictly B-arc-
wise connected functions (STBCN) based no the definitions of arcwise connected (CN) and
B-vex functions.

Definition 2.4 Let f be a real-valued function defined on an AC set C ⊂ R
n . Then

(i) f is said to be a B-arcwise connected function (BCN) if, for every x1 ∈ C,

x2 ∈ C , there exist an arc Hx1,x2 and a real function b(x1, x2, θ) such that

f (Hx1,x2(θ)) ≤ (1 − θb(x1, x2, θ)) f (x1)

+ θb(x1, x2, θ) f (x2), for 0 ≤ θ ≤ 1, 0 ≤ θb ≤ 1.

(ii) f is said to be a strictly B-arcwise connected function (STBCN) if, for every x1 ∈ C,

x2 ∈ C, x1 �= x2, there exist an arc Hx1,x2 and a real function b such that

f (Hx1x2(θ)) < (1 − θb(x1, x2, θ)) f (x1)

+ θb(x1, x2, θ) f (x2), for 0 < θ < 1, 0 < θb < 1.

f is said to be a concave BCN (COBCN) and concave STBCN (COSTBCN) function, respec-
tively, if − f is a BCN and STBCN function, respectively.

Definition 2.5 [2,20] Let f be a real-valued function defined on an AC set C ⊂ R
n . Let

x1 ∈ C, x2 ∈ C and Hx1,x2 be the arc connecting x1 and x2 in C. The function f is said to
possess a right derivative or right differential with respect to an arc Hx1,x2 at θ = 0 if

lim
θ→0+

f (Hx1,x2(θ)) − f (x1)

θ

exists. This limit is denoted by f +(Hx1,x2(0)). If

lim
θ→0+

Hx1,x2(θ) − x1

θ

exists and we denote it by H+
x1,x2(0), then vector H+

x1,x2(0) is called directional derivative of
Hx1,x2 at θ = 0.
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The right derivative or right differential of f can be written as

f +(Hx∗,x (0)) = H+
x∗,x (0)∇ f (x∗)T ,

whenever f +(Hx1,x2(0)) and H+
x1,x2(0) exist.

Definition 2.6 A real function f defined on an AC set C ⊆ Rn is said to be directional
differentially B-arcwise connected (DBCN) [ directional differentially strictly B-arcwise
connected (DSTBCN)] if for every x1 ∈ C, x2 ∈ C [if for every x1 ∈ C, x2 ∈ C , x1 �= x2],
there exist an arc Hx1,x2 in C and a real function b such that the following two conditions
are satisfied:

(i) f is BCN function with respect to b and Hx1,x2 , and b̄(x1, x2) = limθ→0+ b(x1, x2, θ).
(ii) f possess a right derivative or right differential f +(Hx1,x2(0)), with respect to an arc

Hx1,x2 at θ = 0.

Remark 2.1 The sum of two BCN is not necessarily BCN, unless an extra restriction is
required that they be BCN with respect to the same arc and function b for each pair of points.

Remark 2.2 (i) Every CN function is BCN function, however, the converse is not neces-
sarily true.

(ii) Every STCN function is STBCN function, however, the converse is not necessarily true.

(iii) Every B-vex function is BCN function, however, the converse is not necessarily true.

(iv) Every strictly B-vex function is STBCN function, however, the converse is not neces-
sarily true.

Below, we give an example.

Example 2.1 Define f as

f (x) =
{

(x1x2)
2, if x1x2 ≤ 4,

16, otherwise.

The level set of this function is denoted by S( f, α)(∀α ∈ R) and level curves of the function
are shown in Fig. 1. It is clear that this function is not quasiconvex, convex, or concave. For
every x1 ∈ R

2, x2 ∈ R
2, we define arc as

Hx1,x2(θ) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − 2θ)x1, if 0 ≤ θ ≤ 1

2

(2θ − 1)x2, if
1

2
≤ θ ≤ 1

and function b : C × C × [0, 1] −→ R+ as
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Fig. 1 A BCN function

b(x1, x2, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 − 4θ, if 0 ≤ θ ≤ 1

2
and x1

1 x1
2 ≤ 4, x2

1 x2
2 ≤ 4

(2θ − 1)2/θ, if
1

2
< θ ≤ 1 and x1

1 x1
2 ≤ 4, x2

1 x2
2 ≤ 4

0, if 0 ≤ θ ≤ 1

2
and x2

1 x2
2 > 4 or x1

1 x1
2 > 4, x2

1 x2
2 > 4

1/θ, if
1

2
< θ ≤ 1 and x2

1 x2
2 > 4.

Then, we can prove that it is a BC N function on R
2. However, we have

f (Hx1,x2(θ)) > (1 − θ) f (x1) + θ f (x2), for θ = 1/4, x1 = (2, 8), x2 = (0, 0)

and

f (Hx1,x2(θ)) < (1 − θ) f (x1) + θ f (x2), for θ = 1/4, x1 = (2, 0), x2 = (4, 1),

therefore, f is neither a CN nor a C OC N function. Again, we obtain

f (θx1 + (1 − θ)x2) > θb(x1, x2, θ) f (x1)

+ (1 − θb(x1, x2, θ)) f (x2), for θ = 1/4, x1 = (0, 0), x2 = (1, 4)

and

f (θx1 + (1 − θ)x2) < θb(x1, x2, θ) f (x1)

+ (1 − θb(x1, x2, θ)) f (x2), for θ = 1/4, x1 = (4, 1), x2 = (2, 1),

hence, f is neither a B−vex nor a B−cave function.
We now give the differential and extreme properties of BCN and STBCN functions. Their

other basic properties will be studied in future paper.
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Theorem 2.1 Assume that f is a real-valued DBCN function on C, then

f +(Hx1,x2(0)) ≤ b̄(x1, x2)[ f (x2) − f (x1)]
for 0 < θ < 1, where b̄(x1, x2) = limθ→0+ b(x1, x2, θ).

Proof Let f be a DBCN function, then, for every x1 ∈ C, x2 ∈ C , there exist an arc
Hx1,x2(θ) and a real function b(x1, x2, θ) such that

f (Hx1,x2(θ)) ≤ (1 − θb(x1, x2, θ)) f (x1) + θb(x1, x2, θ) f (x2)

for 0 < θ < 1. It follows that

f (Hx1,x2(θ)) − f (x1)

θ
≤ b(x1, x2, θ)[ f (x2) − f (x1)].

Let θ → 0+, we have

f +(Hx1,x2(0)) ≤ b̄(x1, x2)[ f (x2) − f (x1)].

�

Corollary 2.1 Assume that f is a real-valued DSTBCN function on C, then

f +(Hx1,x2(0)) ≤ b̄(x1, x2)[ f (x2) − f (x1)]
for 0 < θ < 1, where b̄(x1, x2) = limθ→0+ b(x1, x2, θ).

Theorem 2.2 Assume that f is a real-valued DBCN function on AC set C ⊂ Rn, and let
b(x∗, x) = limθ→0+ b(x∗, x, θ) > 0. If x∗ ∈ C is a point where ∇ f (x∗) = 0, then x∗ is a
global minimum point of f on C.

Proof Let f be a DBCN, and Suppose that ∇ f (x∗) = 0, then for every x ∈ C , arc Hx∗,x
and a real function b(x∗, x), we have

b(x∗, x)[ f (x) − f (x∗)] ≥ f +(Hx∗,x (0)) = H+
x∗,x (0)∇ f (x∗)T = 0.

From that it follows

b(x∗, x) f (x) ≥ b(x∗, x) f (x∗).

Since b(x∗, x) > 0, thus f (x) ≥ f (x∗), then x∗ is a global minimum point of f on C . 
�
Theorem 2.3 Assume that f is a real-valued DSTBCN function on AC set C ⊂ Rn, and let
b(x∗, x) = limθ→0+ b(x∗, x, θ) > 0. If x∗ ∈ C is a point where ∇ f (x∗) = 0, then x∗ is a
unique global minimum point of f on C.

Proof Similarly to proof of Theorem 2.2 we can show that x∗ is a global minimum point of
f on C .

Now we prove uniqueness. If x0 is other global minimum point of f on C , then f (x0) =
f (x∗), x0 �= x∗. Since f is STBCN, then there exist an arc Hx∗,x0(θ) and a real-valued
function b(x∗, x0, θ) such that

f (Hx∗,x0(θ)) < (1 − θb(x∗, x0, θ)) f (x∗) + θb(x∗, x0, θ) f (x0) = f (x∗), for 0 < θ < 1,

this contradicts that x∗ is a global minimum of f on C . 
�
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3 Optimality conditions

Consider the following nonlinear semi-infinite programming problem (P):

minimize f (x)

subject to g(x, u) ≤ 0(u ∈ U )

x ∈ X,

where X ⊂ R
n is a nonempty open AC set, U ⊂ R

m is an infinite countable set, f : X −→ R,
g : X × U −→ R are real-valued functions, the right derivatives of the functions f (x) and
g(x, u) (u ∈ U ) with respect to an arc Hx1,x2 at θ = 0 exist for every x1 ∈ X, x2 ∈ X .
The feasible region of problem (P) is denoted by X0 = {x ∈ X |g(x, u) ≤ 0, u ∈ U }. Let
� = {i |g(x, ui ) ≤ 0, x ∈ X, ui ∈ U } and � = {λ = (λi )i∈� | only finitely many λi �= 0}.
We define Ũ (x∗) := {ui |g(x∗, ui ) = 0, ui ∈ U }, the set of u for which our constrait is
active. Let I (x∗) := {i |g(x∗, ui ) = 0} = {i |ui ∈ Ũ } and J (x∗) := {i |g(x∗, ui ) < 0}.

Below, we study optimality of problem (P). The theorems of the optimality for problem
(P) are given and proven as follows:

Lemma 3.1 Let g(x, ui )(i = 1, 2, . . .) be a real-valued BCN function with respect to x
defined on AC set X × U ⊂ R

n+m. Then, exactly one of the following systems is solvable:

(i) there exists x ∈ X such that g(x, ui ) < 0 (i = 1, 2, . . .).
(ii) there exists λ ∈ �,λ ≥ 0 such that

∑
i∈� λi g(x, ui ) ≥ 0, for all x ∈ X.

Proof If the systems (i) has a solution, then, for every x1 ∈ X, x2 ∈ X , there exist an arc
Hx1,x2 and a real function b such that

g(Hx1,x2(θ), ui ) ≤ (1 − θb(x1, x2, θ))g(x1, ui ) + θb(x1, x2, θ)g(x2, ui ) < 0 (3.1)

for 0 ≤ θb ≤ 1, hence Hx1,x2(θ) ∈ X . For any λ ∈ �,λ ≥ 0 and by (3.1), we obtain∑
i∈�

λi g(Hx1,x2(θ), ui ) < 0. (3.2)

If the systems (ii) has also a solution, then there exists λ ∈ �,λ ≥ 0 such that
∑

i∈�

λi g(Hx1,x2(θ), ui ) ≥ 0 for the arc Hx1,x2(θ) ∈ X , this contradicting (3.2), hence (ii) has no
solution.

Similarly, we can show that if the systems (ii) has a solution, then systems (i) has no
solution. 
�
Theorem 3.1 (Fritz-John Type Necessary Optimality Condition) Assume that x∗ is an opti-
mal solution of (P). If f +(Hx∗,x (0)) and g+(Hx∗,x (0), u∗i )(i ∈ I (x∗)) are DBCN functions
of x, g(x, ui )(i ∈ J (x∗)) is continuous at x∗ with AC set X. Then there exist λ∗

0 ∈ R, λ∗ ∈ �

such that

λ∗
0 f +(Hx∗,x (0)) +

∑
i∈�

λ∗
i g+(Hx∗,x (0), ui ) ≥ 0, for all x ∈ X, (3.3)

∑
i∈�

λ∗
i g(x∗, ui ) = 0, (3.4)

λ∗
0 ≥ 0, λ∗ ≥ 0. (3.5)
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Proof First we assert that the system

f +(Hx∗,x (0)) < 0, (3.6)

g+(Hx∗,x (0), ui ) < 0, i ∈ � (3.7)

has no solution x in X .
If possible let x ∈ X be a solution of system (3.6) and (3.7). Since right differentials of

f (x) and g(x, ui )(i ∈ I (x∗)) at x∗ exist with respect to the Hx∗,x , therefore

f (Hx∗,x (θ)) = f (x∗) + θ f +(Hx∗,x (0)) + θα(θ) (3.8)

and

g(Hx∗,x (θ), ui ) = g(x∗, ui ) + θg+(Hx∗,x (0), ui ) + θαi (θ), (3.9)

where

lim
θ→0+ α(θ) = 0, lim

θ→0+ αi (θ) = 0, i ∈ I (x∗). (3.10)

Using (3.6), (3.7) and (3.10), we obtain, for small enough θ, 0 < θ < θ̄ < 1

f +(Hx∗,x (0)) + α(θ) < 0, (3.11)

g+(Hx∗,x (0), ui ) + θαi (θ) < 0, i ∈ I (x∗). (3.12)

Hence, by relations (3.8) and (3.9), we have, for 0 < θ < θ̄

f (Hx∗,x (θ)) < f (x∗) (3.13)

and

g(Hx∗,x (θ), ui ) < g(x∗, ui ), i ∈ I (x∗). (3.14)

Now, since g(Hx∗,x (θ), ui )(i ∈ J (x∗)) is continuous at x∗ and Hx∗,x (θ) is also a continuous
function of θ , therefore

lim
θ→0+ g(Hx∗,x (θ), ui ) = g(x∗, ui ) < 0

which implies that there exist θ∗
i , 0 < θ∗

i < 1(i ∈ J (x∗)), such that

g(Hx∗,x (θ), ui ) < 0, for 0 < θ < θ∗
i . (3.15)

Let θ∗ = min(θ̄ , θ∗
i ). Thus using (3.13), (3.14) and (3.15) we get for 0 < θ < θ∗, Hx∗,x (θ) ∈

X0 ⊂ X and f (Hx∗,x (θ)) < f (x∗) which is a contradiction as x∗ is an optimal solution of
(P). Hence, the system (3.6) and (3.7) has no solution x ∈ X .

Since f +(Hx∗,x (0)) and g+(Hx∗,x (0), ui )(i ∈ I (x∗)) are BCN functions of x , therefore
by Lemma 3.1, there exist λ∗

0 ∈ R, (λ∗
i )i∈I (x∗), λ∗

i ∈ R, only finitely many nonzero, such that
the following conditions hold:

λ∗
0 f +(Hx∗,x (0)) +

∑
i∈I (x∗)

λ∗
i g+(Hx∗,x (0), ui ) ≥ 0,

∑
i∈�

λ∗
i g(x∗, ui ) = 0,

λ∗
0 ≥ 0, λ∗

i ≥ 0, i ∈ I (x∗).

Again letting λ∗
i = 0 (i ∈ J (x∗)), then the conclusion of the theorem holds. 
�
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Theorem 3.2 (Fritz-John Type Necessary Optimality Condition) Assume that x∗ is an opti-
mal solution of (P). If f (x) and g(x, ui )(i ∈ �) are DBCN functions of x with respect to the
same arc and function b. Then for ui ∈ U, there exist λ∗

0 ∈ R, λ∗ ∈ � such that (3.3)–(3.5)
hold at x∗.

Proof Since x∗ is an optimal solution of (P), hence

f (x) ≥ f (x∗), ∀x ∈ X0 ⊂ X,

then the system

f (x) − f (x∗) < 0

g(x, ui ) < 0

has no solution.
We now prove F(x, ui ) = ( f (x) − f (x∗), g(x, ui )) is a BCN function of x for every

ui ∈ U . Since f (x) and g(x, ui )(i ∈ �) are DBCN functions of x with respect to the same
arc and function b for x1, x2 ∈ X , therefore there exist an arc Hx1,x2(θ) and a real function
b(x1, x2, θ) such that

F(Hx1,x2(θ), ui ) = ( f (Hx1,x2(θ)) − f (x∗), g(Hx1,x2(θ), ui ))

≤ ((1 − θb(x1, x2, θ)) f (x1) + θb(x1, x2, θ) f (x2)

− f (x∗), (1 − θb(x1, x2, θ))g(x1, ui )

+ θb(x1, x2, θ)g(x2, ui ))

= ((1 − θb(x1, x2, θ))( f (x1) − f (x∗))+θb(x1, x2, θ)( f (x2) − f (x∗)),
(1 − θb(x1, x2, θ))g(x1, ui ) + θb(x1, x2, θ)g(x2, ui ))

= (1 − θb(x1, x2, θ))( f (x1) − f (x∗), g(x1, ui ))

+ θb(x1, x2, θ)( f (x2) − f (x∗), g(x2, ui )).

Hence, F(x, ui ) = ( f (x) − f (x∗), g(x, ui ))(i ∈ �) is a BCN function. By Lemma 3.1,
there exist λ∗

0 ∈ R, λ∗
0 ≥ 0, λ∗ ∈ �,λ∗ ≥ 0 such that

λ∗
0( f (x) − f (x∗)) +

∑
i∈�

λ∗
i g(x, ui ) ≥ 0, for all x ∈ X. (3.16)

Taking x = x∗, we get
∑

i∈� λ∗
i g(x∗, ui ) ≥ 0. Since λ0 ≥ 0, λ∗ ≥ 0 and x∗ is feasible for

(P), we have
∑

i∈� λ∗
i g(x∗, ui ) ≤ 0. Hence

∑
i∈� λ∗

i g(x∗, ui ) = 0.
Since X is an AC set, thus Hx∗,x (θ) ∈ X , for all x ∈ X0, 0 < θ < 1, by (3.16) and∑
i∈� λ∗

i g(x∗, ui ) = 0, we obtain

λ∗
0( f (Hx∗,x (θ)) − f (x∗)) +

∑
i∈�

λ∗
i (g(Hx∗,x (θ), ui ) − g(x∗, ui )) ≥ 0.

Dividing by θ > 0 and then letting θ → 0+, we obtain

λ∗
0 f +(Hx∗,x (0)) +

∑
i∈�

λ∗
i g+(Hx∗,x (0), ui ) ≥ 0, for all x ∈ X,

i.e., the conclusion of the theorem holds true. 
�
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Theorem 3.3 (Karush-Kuhn-Tucker Type Necessary Optimality Condition) Assume that x∗
is an optimal solution of (P) and let f (x), g(x, ui )(i ∈ �) be DBCN functions of x with
respect to the same arc Hx∗,x (θ) and b(x∗, x) = limθ→0+ b(x∗, x, θ) > 0. If there exists
x̂ ∈ X0 such that g(x̂, ui ) < 0, then for ui ∈ U, there exist λ∗

0 ∈ R, λ∗
0 > 0, λ∗ ∈ � such

that (3.3)–(3.5) hold at x∗.

Proof By theorem 3.2, there exist λ∗
0 ≥ 0 and λ∗ ∈ � such that (3.3)–(3.5) hold.

Now, suppose that λ∗
0 = 0. Then (3.3)–(3.5) reduce to∑

i∈�

λ∗
i g+(Hx∗,x (0), ui ) ≥ 0, for all x ∈ X, (3.17)

∑
i∈�

λ∗
i g(x∗, ui ) = 0, (3.18)

λ∗ > 0. (3.19)

Since g(x, ui ) is a DBCN function, we have

g+(Hx∗,x̂ (0), ui ) ≤ b(x∗, x̂)[g(x̂, ui ) − g(x∗, ui )]. (3.20)

Using (3.19) and (3.20), we obtain∑
i∈�

λ∗
i g+(Hx∗,x̂ (0), ui ) ≤ b(x∗, x̂)

∑
i∈�

λ∗
i [g(x̂, ui ) − g(x∗, ui )]. (3.21)

It follows from (3.17), (3.18) and (3.21) that

b(x∗, x̂)
∑
i∈�

λ∗
i g(x̂, ui ) ≥ 0. (3.22)

But since b(x∗, x̂) > 0, thus (3.22) contradicts the facts that∑
i∈�

λ∗
i g(x̂, ui ) < 0 and λ∗ ≥ 0.

hence, λ∗
0 > 0. 
�

Theorem 3.4 Assume that f (x) is a DB0CN function and g(x, ui )(i ∈ I (x∗)) is a DBi CN
function at x∗ with respect to the same arc Hx∗,x (θ) and

b0(x∗, x) = lim
θ→0+

b0(x∗, x, θ) > 0, bi (x∗, x) = lim
θ→0+

bi (x∗, x, θ), 0 ≤ θ ≤ 1.

If there exist λ∗
0 ∈ R, λ∗

0 > 0, λ∗ ∈ �, for all x ∈ X0 and any ui ∈ U such that (3.3)-(3.5)
hold at x∗, then x∗ is an optimal solution of (P).

Proof If x∗ is not an optimal solution of (P), then there exists x̄ ∈ X0 such that

f (x̄) < f (x∗). (3.23)

Since f (x) is a DB0CN function, g(x, ui )(i ∈ I (x∗)) is a DBi CN function, and by
Theorem 2.1 and (3.23), there exists an arc Hx∗,x̄ (θ), 0 ≤ θ ≤ 1, for b0(x∗, x̄) > 0,

bi (x∗, x̄) ≥ 0, we obtain

f +(Hx∗,x̄ (0)) ≤ b0(x∗, x̄)[ f (x̄) − f (x∗)] < 0 (3.24)
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and

g+(Hx∗,x̄ (0), ui ) ≤ bi (x∗, x̄)[g(x̄, ui ) − g(x∗, ui )], i ∈ I (x∗). (3.25)

For λ∗
0 > 0, λ∗ ∈ �,λ∗ ≥ 0 (λ∗

i = 0 when i ∈ J (x∗)), from (3.24) and (3.25), we have

λ∗
0 f +(Hx∗,x̄ (0)) +

∑
i∈�

λ∗
i g+(Hx∗,x̄ (0), ui ) <

∑
i∈�

λ∗
i bi (x∗, x̄)[g(x̄, ui ) − g(x∗, ui )],

by (3.4), it follows that

λ∗
0 f +(Hx∗,x̄ (0)) +

∑
i∈�

λ∗
i g+(Hx∗,x̄ (0), ui ) < 0,

which contradicts to (3.3). Hence x∗ is an optimal solution of (P). 
�
The proof of the following theorem follows on the lines of Theorem 3.4; therefore, we

state it without proof.

Theorem 3.5 Assume that f (x) is a DSTB0CN function and let g(x, ui )(i ∈ I (x∗)) be a
DSTBi CN or DBi CN function at x∗ with respect to the same arc Hx∗,x (θ) and

b0(x∗, x) = lim
θ→0+

b0(x∗, x, θ) > 0, bi (x∗, x) = lim
θ→0+

bi (x∗, x, θ), 0 < θ < 1.

If there exist λ∗
0 ∈ R, λ∗

0 > 0, λ∗ ∈ �, for all x ∈ X0 and any ui ∈ U such that (3.3)–(3.5)
hold at x∗, then x∗ is an optimal solution of (P).

Example 3.1 Let X = {(x1, x2)|x2
1 + x2

2 ≥ 1, x1 > 0, x2 > 0}. Define f : X −→ R,

g : X × U −→ R as

f (x) =
⎧⎨
⎩

3x2
1 + 2x2

2 , 1 < x1 ≤ 4, 1 < x2 ≤ 4
100, x1 ≥ 4 or x2 ≥ 4 or x1 ≥ 4, x2 ≥ 4
5, otherwise,

g(x, u) =
{

x2
2 − x2

1 sin ui , x1 > 1, x2 > 1
1 − sin ui , otherwise,

where ui ∈ U = {ui |ui = 2π + (iπ)/2, i = 1, 2, . . .}.
Let Hx1,x2 : [0, 1] −→ X , defined as

Hx1,x2(θ) = (((1 − θ)(x1
1 )2 + θ(x2

1 )2)1/2, ((1 − θ)(x1
2 )2 + θ(x2

2 )2)1/2),

where x1 = (x1
1 , x1

2 ) and x2 = (x2
1 , x2

2 ). Let b0 : X × X × [0, 1] −→ R+ as

b0(x1, x2, θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if x1
1 ≥ 4 or x1

2 ≥ 4 or x1
1 ≥ 4, x1

2 ≥ 4 and
x2

1 < 4 or x2
2 < 4 or x2

1 < 4, x2
2 < 4

1/θ, if x2
1 ≥ 4 or x2

2 ≥ 4 or x2
1 ≥ 4, x2

2 ≥ 4 and
x1

1 < 4 or x1
2 < 4 or x1

1 < 4, x1
2 < 4

1, otherwise

and b1 : X × X × [0, 1] −→ R+ as b1(x1, x2, θ) = 1.

Then, f is not CN, COCN, B0-vex, or B0-cave function, however, it is a B0CN function
with respect to the arc Hx1,x2 and b0, g is a B1CN function for x with respect to the arc
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Hx1,x2 and b1. They are nondifferentiable at x∗ = (1, 1), but they possess right differentials
with respect to the arc Hx∗,x for all x ∈ X , at θ = 0, and they are given by

f +(Hx∗,x (0)) =
{

3(x1)
2 + 2(x2)

2 − 5, if both components of Hx∗,x > 1
0, otherwise,

g+(Hx∗,x (0), ui ) =
⎧⎨
⎩

(x2)
2 − (x1)

2 − 1 + sin ui , if both components of
Hx∗,x > 1, ui ∈ U, i = 1, 2, . . .

0, otherwise,

where x = (x1, x2).
The set of active constraints is given by I (x∗) = {i |g(x∗, ui ) = 0, ui =π/2 + 2iπ ∈ U,

i = 1, 2, . . .}, we have

g+(Hx∗,x (0), ui ) =
{

(x2)
2 − (x1)

2, if both components of Hx∗,x > 1
0, otherwise,

for i ∈ I (x∗), where x = (x1, x2).
For these functions f (x) and g(x, ui ), we consider the programming problem (P), and

are easy to get that λ∗
0 = 1, λ∗

1 = 1, λ∗
2 = 1, λ∗

3 = 1, λ∗
4 = 0, and λ∗

5 = 0, . . .

λ∗
0 f +(Hx∗,x (0)) +

∑
i∈I (x∗)

λ∗
i g+(Hx∗,x (0), ui ) ≥ 0, for all x ∈ X,

which implies that x∗ = (1, 1) is an optimal solution of (P).

4 Duality

In this section, we consider the following Mond-Weir type dual problem (D) for problem (P):

maximize f (y)

subject to λ0 f +(Hy,x (0)) +
∑
i∈�

λi g+(Hy,x (0), ui ) ≥ 0, (4.1)

∑
i∈�

λi g(y, ui ) ≥ 0, (4.2)

λ0 ≥ 0, λ ≥ 0, λ ∈ �. (4.3)

Let W = {(y, ui , λ0, λ)|λ0 f +(Hy,x (0)) + ∑
i∈�

λi g+(Hy,x (0), ui )≥ 0,
∑
i∈�

λi g(y, ui ) ≥ 0,

λ0 ≥ 0, λ ≥ 0, λ ∈ �} be the set of feasible solutions of (D). The optimal values of (P) and
(D) are denoted by v(P) and v(D), respectively.

Now, we establish duality relationship between problems (P) and (D).

Theorem 4.1 (Weak Duality) Assume that x is feasible for (P) and (y, ui , λ0, λ) is feasible
for (D). If f (x) is a DB0CN at y and

∑
i∈� λi g(x, ui ) is a DB1CN at y with respect to the

same arc and

b0(x, y) = lim
θ→0+

b0(x, y, θ) > 0, b1(x, y) = lim
θ→0+

b1(x, y, θ),

then

f (y) ≤ f (x).
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Proof Suppose that

f (y) > f (x).

Since f (x) is a DB0CN at y, therefore using Theorem 2.1, we obtain

f +(Hy,x (0)) ≤ b0(x, y)[ f (x) − f (y)] < 0. (4.4)

By the feasibility of x and (y, ui , λ0, λ) for (P) and (D), respectively, we get∑
i∈�

λi g(x, ui ) ≤
∑
i∈�

λi g(y, ui ).

Now
∑

i∈� λi g(x, ui ) is a DB1CN at y, using Theorem 2.1, we have

∑
i∈�

λi g
+(Hy,x (0), ui ) ≤ b1(x, y)

[∑
i∈�

λi g(x, ui ) −
∑
i∈�

λi g(y, ui )

]
≤ 0. (4.5)

Letting λ0 > 0, and adding (4.4) × λ0 and (4.5), we have

λ0 f +(Hy,x (0)) +
∑
i∈�

λi g
+(Hy,x (0), ui ) < 0

which is a contradiction to (4.1). Hence

f (y) ≤ f (x).


�
Theorem 4.2 (Strong Duality) Assume that x∗ is an optimal solution of (P), and let f +
(Hx∗,x (0)) and g+(Hx∗,x (0), ui )(i ∈ �) be BCN functions of x, g(x, ui )(i ∈ J (x∗)) be
continuous at x∗ with AC set X ⊆ R

n. Then there exist λ∗
0 ≥ 0, λ∗ ≥ 0, λ∗ ∈ � such that

(x∗, ui , λ∗
0, λ

∗) is a feasible solution for (D), and the values of the objective functions for
(P) and (D) are equal at x∗. Also if for every feasible solution (y, ui , λ0, λ) for (D), f is
a DB0CN (or DSTB0CN) at y and

∑
i∈� λi g(x, ui ) is a DB1CN (or DSTB1CN) at y for

arbitrary ui ∈ U with

b0(x, y) = lim
θ→0+

b0(x, y, θ) > 0, b1(x, y) = lim
θ→0+

b1(x, y, θ),

then (x∗, ui , λ∗
0, λ

∗) is an optimal solution for (D), and v(P) = v(D).

Proof Since x∗ is an optimal solution of (P), f +(Hx∗,x (0)) and g+(Hx∗,x (0), ui )(i ∈ �) are
BCN function of x , g(x, ui )(i ∈ J (x∗)) is continuous at x∗ with AC set X ⊆ R

n , therefore
by Theorem 3.1, there exist λ∗

0 ≥ 0, λ∗ ≥ 0, λ∗ ∈ �, for ui ∈ U such that (x∗, ui , λ∗
0, λ

∗)
is a feasible solution of (D). Equality of the objective functions for (P) and (D) follows
trivially.

If (x∗, ui , λ∗
0, λ

∗) is not an optimal solution for (D), then exists (y, ui , λ0, λ) feasible
solution for (D) such that

f (x∗) < f (y)

which is a contradiction to Theorem 4.1 (Weak Duality). Hence (x∗, ui , λ∗
0, λ

∗) is an optimal
solution for (D) and, obviously, v(P) = v(D). 
�
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Theorem 4.3 (Weak Duality) Assume that x is feasible for (P) and (y, ui , λ0, λ) is feasible
for (D). If f (x) is a DSTB0CN at y and

∑
i∈� λi g(x, ui ) is a DB1CN (or DSTB1CN) at y

with respect to the same arc and

b0(x, y) = lim
θ→0+

b0(x, y, θ) > 0, b1(x, y) = lim
θ→0+

b1(x, y, θ),

then

f (y) ≤ f (x).

The proof of Theorem4.3 follows on the lines of Theorem4.1.

Theorem 4.4 (Strong Duality) Assume that x∗ is an optimal solution of (P), and let f (x)

and g(x, ui )(i ∈ �) be DBCN functions of x with respect to the same arc and b̄(x, y) =
limθ→0+ b(x, y, θ) > 0. If there exists x̂ ∈ X0 such that g(x̂, ui ) < 0, then (x∗, ui , λ∗

0, λ
∗)

is an optimal solution for (D), and v(P) = v(D).

Proof Since g(x, ui )(i ∈ �) is a DBCN function of x with respect to the same arc and
b̄(x, y), hence we know

∑
i∈� λi g(x, ui ) is a DBCN function at y for arbitrary ui ∈ U and

λ ∈ � with respect to b̄(x, y), from assumption of the theorem and by Theorem 3.3, we know
that there exist λ∗

0 ≥ 0, λ∗ ≥ 0, λ∗ ∈ �, for ui ∈ U such that (x∗, ui , λ∗
0, λ

∗) is a feasible
solution of (D). Equality of the objective functions for (P) and (D) follows trivially.

If (x∗, ui , λ∗
0, λ

∗) is not an optimal solution for (D), then exists (y, ui , λ0, λ) feasible
solution for (D) such that

f (x∗) < f (y)

which is a contradiction to Theorem 4.1 (Weak Duality). Hence (x∗, ui , λ∗
0, λ

∗) is an optimal
solution for (D) and, obviously, v(P) = v(D). 
�
Theorem 4.5 (Strong Duality) Assume that x∗ is an optimal solution of (P), and let f (x)

and g(x, ui )(i ∈ �) be DSTBCN functions of x with respect to the same arc and b̄(x, y) =
limθ→0+ b(x, y, θ) > 0. If there exists x̂ ∈ X0 such that g(x̂, ui ) < 0, then (x∗, ui , λ∗

0, λ
∗)

is an optimal solution for (D), and v(P) = v(D).

The proof of Theorem 4.5 follows on the lines of Theorem 4.4.

Example 4.1 we consider the dual problem (D) of the primal programming in Example 3.1
and know x∗ = (1, 1) is an optimal solution of primal programming. For λ∗

0 = 1, λ∗ =
(λ∗

1, λ
∗
2, λ

∗
3, λ

∗
4, λ

∗
5, . . .) = (1, 1, 1, 0, 0, . . .), ui = π/2 + 2iπ ∈ U, i ∈ , the condi-

tions of Theorem 4.2 are satisfied. Hence, (x∗, ui , λ∗
0, λ

∗) is an optimal solution of this dual
programming and v(P) = v(D).

5 Conclusions and outlook

The concepts of B-arcwise connected (BCN) and strictly B-arcwise connected functions
(STBCN) based on arcwise connected functions (CN) and B-vex functions are introduced
into the paper. Some differential and extreme properties are studied. The optimality conditions
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and Mond-Weir type duality results are obtained for a nonlinear constrained semi-infinite
programming problem involving BCN and STBCN functions. The BCN function will play a
vital role in many aspects of mathematical programming including optimality conditions and
duality theorems, which will be used in constrained multiobjective programming, generalized
convex programming, and fractional programming. There are many practical problems which
may be treated by SIP techniques, including engineering design [17], orthogonal wavelet fil-
ter design [18], reliability testing [18], robot trajectory planning [9], air pollution control
[9], constrained Chebyshev approximation and new product development planning etc. The
arcwise connected SIP in this paper will also be applied in many practical problems.
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